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Abstract— This paper proposes a distributed protocol that
can self-organize a connected graph representing a network
into a random approximate regular graph with an arbitrary
degree, which is known to possess robustness properties against
link and node failures, including also DoS network attacks.
The scenario under consideration is that of an unstructured
peer-to-peer network, where the agents and are allowed to
close communications with their neighbors and establish new
communications with two-hop neighbor, while the time-varying
graph topology remains unknown. To validate the efficacy of
the proposed protocol, we examine the spectral properties of
the self-organizing graph, and we numerically show that they
approach those of random regular graphs, particularly for large
networks. We also compare the performance of the proposed
protocol with the state-of-the-art, showing improvements in
convergence speed and scalability, despite the absence of syn-
chronous multi-node coordination of previous approaches in
the literature.

I. INTRODUCTION

Collaborative networks of agents are profoundly shaped by
their mutual interaction pattern, which can significantly im-
pact network performance. Graph theory offers an insightful
framework for modeling such patterns, representing agents as
nodes and interactions as edges connecting them. The prop-
erties of the graph play a pivotal role in modeling several key
network properties, including resilience to perturbations [1],
[2], controllability [3]–[5], and the feasibility of distributed
algorithms [6], [7].

In many applications, multi-agent networks must deal
with perturbations such as sudden disconnections of agents
due to failures [8], [9] or attacks carried out by mali-
cious agents [10]. One of the worst events that should be
avoided is the disconnection of the network into two or
more components, which can impede the flow of information
throughout the network. To quantify the connectivity of a
graph, measures have been proposed that are mostly related
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to the number of nodes and edges that need to be removed
to disconnect the graph. Some well-established measures in-
clude algebraic connectivity and the Fiedler eigenvector [11],
[12], the Kirchoff index [13], [14], and the edge/node ex-
pansion ratio [15], [16]. These measures reflect the quality
of connectivity of a graph and have been employed to
characterize its robustness and synchronizability [17].

Algorithms aimed at enhancing graph connectivity based
on diverse connectivity metrics have garnered significant
attention [18]–[21]. The trivial attempt of adding more edges
to the graph to increase the connectivity may not be feasible
or convenient in many scenarios, such as the case when edges
represent physical communication channels [22], in which
case the existence of an edge corresponds to an economic
burden. Thus, at an equivalent level of connectivity, a sparse
graph may be preferable to a dense one. An intriguing class
of graphs that attains high connectivity levels across various
measures while also maintaining significant levels of sparsity
is represented by random regular graphs [23]. A regular
graph is such that all nodes have the same number k ∈ N
of edges, thus called k-regular; for a graph to be k-regular,
the product nk must be even, ensuring that the total number
of edges is an integer. Such graphs are also random if they
are selected at random, with uniform probability, from the
set of all regular graphs with the same number of nodes and
edges.

The problem of interest of this study is to increase
network resilience to disconnection, resulting from the loss
of nodes or links, in a distributed manner, leveraging only
locally available information. The proposed approach differs
from the series of works by Yazıcıoğlu, Egerstedt, and
Shamma [23]–[25] in that it allows for arbitrary selection
of regularity degree k ∈ N by loosening the standard
regularity notion. Specifically, we introduce the concept of
random ∆-approximate k-regular graphs, where nodes have
a variable number of edges within the range [k, k+∆] where
∆ ∈ N. These graphs exhibit similar robustness and spectral
properties to regular graphs.

The main contribution of this paper is the development of
a novel distributed protocol that enables the self-organization
of a connected graph into what we term as a random
2-approximate k-regular graph in multi-agent networks, of-
fering the following set of features:

• it allows for the arbitrary choice of the regularity degree
k ≥ 2, regardless on the specific initial configuration of
the graphs. This fact allows to employ the proposed
protocol to control the algebraic connectivity of any
graph such that is greater than a certain desired value



λ2,lb that is a function k, namely λ2,lb = k − 2
√
k − 1.

• it solely relies on autonomous decisions made by each
agent, thus not requiring any coordination between
them. This property significantly reduces the conver-
gence time of the proposed protocol w.r.t. other pro-
tocols in the current literature exploiting coordinated
decision-making between neighboring agents;

• it can be employed also in the framework of open
multi-agent systems, where agents may leave or join
the network as time goes by. This flexibility allows
to maintain well connected a network where node and
link failures may arise due to, e.g., malfunctioning or
malicious attacks.

We numerically show that the spectral distribution of the ran-
dom 2-approximate k-regular graph obtained by the proposed
self-organization protocol resembles that of random k-regular
graphs. In particular, the self-organized graphs possess high
algebraic connectivity for a given number of edges (at most
(k + 2)n/2 where n is the number of nodes), resulting in
enhanced resilience to node and link failures.

Structure of the paper: Section II presents some nota-
tions and preliminaries. Section III outlines the proposed
distributed algorithm for solving the formalized problem
along with a numerical analysis showing that the spectral
distribution of the random 2-approximate k-regular graph
proposed in this paper approaches that of random k-regular
graphs. Numerical simulations showcasing the effectiveness
and superiority of the proposed algorithm compared to the
state-of-the-art in Section IV. The paper concludes with a
summary of the work and future directions in Section V.

II. NOTATION AND PRELIMINARIES

We denote with R and N the sets of real and natural
numbers respectively. Moreover, we denote with R+ and N+

their restriction to strictly positive numbers.

A. Networks and graph theory

We consider complex systems consisting of multiple in-
teracting agents and refer to them as Multi-Agent Sys-
tems (MASs). Let n ∈ N be the number of agents,
V = {1, 2, . . . , n} be the set representing the agents and
E ⊆ V × V be a subset of all the pairs among agents
representing their local interconnections. These sets uniquely
define the graph G = (V, E) where V is the set of nodes and
E the set of edges or links. Interactions among agents are
assumed to be undirected, i.e., (i, j) and (j, i) denote the
same link between agents i, j ∈ V .

A path between two nodes i, j ∈ V is a series of edges
(i, p), (p, q), ..., (r, s), (s, j), where each pair of consecutive
edges in the sequence shares a common node. An undirected
graph G is said to be connected if there exists at least
one such path connecting every pair of nodes. When nodes
i, j ∈ V share a link (i, j) ∈ E are said to be neighbors;
all neighbors of a given node i ∈ V are included in the
set Ni = {j ∈ V \ {i} : (i, j) ∈ E}. The neighbors of the
neighbors are said to be 2-hop neighbors, which are included
in the set N 2

i = {k ∈ V \ Ni : (k, j) ∈ E with j ∈ Ni, }.

The number of neighbors of a given node i ∈ V is called
the degree and is denoted by di = |Ni|, where |·| denotes
the cardinality of a set. Consequently, the minimum and
maximum degrees of the nodes in the graph are

dMIN(G) = min
i∈V

di, dMAX(G) = max
i∈V

di,

respectively. The Laplacian matrix of graph G is defined as
Ln = D − An ∈ Nn×n, where D = {dij} ∈ Nn×n is the
degree matrix, a diagonal matrix with diagonal entries equal
to the degrees of the nodes (dii = di) and whose off-diagonal
entries are zero (dij = 0 for i ̸= j); An{aij} ∈ {0, 1}n×n

is the adjacency matrix such that aij = 1 if and only
if (i, j) ∈ E , otherwise aij = 0. The eigenvalues of the
Laplacian matrix Ln and of the adjacency matrix An are
denoted by λi and µi for i = 1, . . . , n, respectively; we
assume that they are always sorted in ascending order, i.e.,
µi ≤ µi+1 and λi ≤ λi+1 for i = 1, . . . , n − 1. Finally, we
recall that the second smallest eigenvalue λ2 of the Laplacian
matrix Ln is known as the algebraic connectivity of the
graph.

B. Link ownership and random approximate regular graphs

We consider a scenario MAS wherein the agents are
allowed to create new links with other agents – which
essentially entails adding new edges to the network graph –
becoming in this way the owner of the link. This ownership
status gives them the exclusive right to delete links, but only
the ones they created, thereby avoiding conflicts such as
when two adjacent agents disagree on whether to remove
a link. We model this scenario by introducing a directed
ownership graph Gd = (V, Ed) such that if (i, j) ∈ Ed then
(j, i) ̸∈ Ed and agent i is the owner of the link with agent
j. Thus, the graph G describing the interconnections among
the agents can be viewed as the undirected version of Gd.
Finally, we let Ni,own = {j ∈ V : (i, j) ∈ Ed} denote the set
of links owned by agent i.

In such a dynamic scenario where the graph changes
over time according to the autonomous actions taken by the
agents becomes of paramount importance to keep the graph
connected with high levels of connectivity, thus promoting
robustness and resilience properties. A class of graphs that
plays a pivotal role in this direction is that of random regular
graphs.

Definition 1: A graph with n nodes is said to be “k-
regular” if each node has degree k such that the product
nk is even, where n, k ≥ 2 are integers.

When considering arbitrary values of the product nk, en-
suring that all nodes have an equal degree k may not
always be achievable; indeed, n and k must be such that the
product nk is even. In pursuit of practical implementation,
especially when the number of agents n is unknown (or time-
varying) and the regularity degree is arbitrary, we introduce
the notion of approximate regular graphs. These graphs
aim to approximate the desired regularity by allowing some
flexibility in the degree distribution while still maintaining a
relatively uniform connectivity pattern.



Definition 2: A graph with n nodes is said to be
“∆-approximate k-regular” if each node has the degree
within [k, k +∆], where n, k ≥ 2 and ∆ ≥ 0 are integers.

Definition 3: A ∆-approximate k-regular graph is said to
be “random” if it is selected uniformly at random from all
∆-approximate k-regular graphs with the same number of
nodes, where n, k ≥ 2 and ∆ ≥ 0 are integers.

III. PROPOSED DISTRIBUTED ALGORITHM

We detail the proposed algorithm in Algorithm 1. At each
time step, each agent i ∈ V is randomly activated and
locally modifies the network topology according to its own
degree di and the desired integer degree k ≥ 2 of the final
2-approximate k-regular graph. It is worth noting that not
all agents are necessarily activated sequentially at each time
step. Instead, each node is activated at random with equal
probability during the procedure. The actions performed
by each agent to locally modify the network topology are
completely independent and do not involve any coordination
with other agents. We provide a detailed explanation of the
rules governing these actions as below.

[Rule (A): add edges while di ≤ k − 1] Agent i picks
at random neighbors j ∈ Ni until it finds one with a neighbor
s ∈ Nj that is not i itself or a neighbor of i. Agent i then
picks at random such agent s among those with a minimum
degree and opens the communication with agent s, i.e., edge
(i, s) is added to E . This process is repeated until di is greater
than k− 1. Outcome: The degree of agent i satisfies di ≥ k.

[Rule (R): remove edges while di ≥ k + 1 and there is
j ∈ Ni,own such that dj ≥ k + 1] Agent i picks at ran-
dom an out-neighbor j ∈ Ni,own with the maximum degree,
such that dj ≥ k + 1, and then closes the communication
with agent j, i.e., edge (i, j) is removed from E . Outcome:
The degree of agents i and j decreases.

[Rule (M): try to move or add edges if Ni,own ̸= ∅]
Agent i picks at random an out-neighbor j ∈ Ni,own with
the maximum degree, then it picks at random a neighbor s
of j that it is not i itself or a neighbor of i and such that
ds ≤ k + 1. If such an agent s does not exist no action is
taken; otherwise two different actions can be taken:

• [move an edge if dj ≥ k + 1] Agent i closes the
communication with agent j, i.e., edge (i, j) is removed
from E , and opens the communication with agent s, i.e.,
edge (i, s) is added to E . Outcome: The degree of agent
i remains the same, the degree of agent j decreases by
1, the degree of agent s increases by 1.

• [add an edge if dj < k + 1 and di ≤ k + 1] Agent
i opens the communication with agent s, i.e., edge (i, s)
is added to E . Outcome: The degree of agents i and s
increases by 1.

The next Theorem 1 proves that Algorithm 1 constructs a
2-approximate regular graph, provided that the graph remains
connected during its execution.

Theorem 1: Consider a network of n ∈ N agents inter-
acting according to an undirected graph G = (V, E) and
executing Algorithm 1 with parameter k ≥ 2. If G is initially

Algorithm 1: Distributed self-organization into
2-approximate k-regular graphs

Input: A connected graph G=(V,E), its ownership
graph Gd(Vd,Ed), and an integer degree k≥2

Output: A random 2-approximate k-regular graph
at each step t=1,2,3, . . . do

Pick at random a node i∈V
while di≤k−1 do // Rule (A)

for j∈Ni do
Nij :={s∈Nj \{Ni∪{i}}}
if Nij ̸=∅ then

N MIN
ij :={s∈Nij :ds=minℓ∈Nij

dℓ}
Pick at random a node s∈N MIN

ij

Add edge (i,s) to E
exit for loop

while di≥k+1 do // Rule (R)

N≥
i,own :={j∈Ni,own :dj≥k+1}

if N≥
i,own ̸=∅ then
N MAX

i,own:={j∈N≥
i,own:dj=max

ℓ∈N≥
i,own

dℓ}
Pick at random a node j∈N MAX

i,own

Remove edge (i, j) from E
else

exit the while loop

if Ni,own ̸=∅ then // Rule (M)

N MAX
i,own :={j∈Ni,own :dj=maxℓ∈Ni,own

dℓ}
Pick at random a node j∈N MAX

i,own

N≤
ij :={s∈Nj \{Ni∪{i}} :ds≤k+1}

if N≤
ij ̸=∅ then
N MIN

ij :={s∈N≤
ij :ds=min

ℓ∈N≤
ij
dℓ}

Pick at random a node s∈N MIN
ij

if dj≥k+1 then
Add edge (i,s) to E
Remove edge (i, j) from E

else if di≤k+1 then
Add edge (i,s) to E

connected and remains connected thereafter, then the degree
di of each agent i ∈ V almost surely converges to the interval
di ∈ [k, k + 2], i.e., G is reorganized into a 2-approximate
k-regular graph.

Proof: A complete proof is omitted in this paper due
to space limitations. However, the essential steps and logical
structure can be found in Appendix A.

Once the graph has been reorganized into a 2-approximate
k-regular graph, see Theorem 1, Algorithm 1 randomizes this
graph during its execution, thus making the occurrence of any
possible connected graph with the class of 2-approximate
k-regular graph equally likely to occur, i.e., the graph is a
random 2-approximate k-regular graph. In this preliminary
work, we provide no formal proof of this fact; instead,
we show by numerical simulations in the following Sec-



tion III-A that the algebraic connectivity and the spectral
distribution of graphs produced by Algorithm 1 approach
those of random k-regular graphs for large networks, that is
λ2 ≥ λ2,lb := k − 2

√
k − 1.

A last remark on Theorem 1 is about the connectivity
assumption, which appears quite strong when one does not
think about the fact that the algorithm is intrinsically de-
signed to increase the algebraic connectivity above the lower
bound λ2,lb. In practice, since the probability of disconnec-
tion is inversely proportional to the algebraic connectivity
and the chosen degree, Algorithm 1 is very unlikely to
disconnect the graph if the initial algebraic connectivity is
sufficiently large. When selecting from the set of random k-
regular graphs, there is a possibility of choosing a graph with
poor connectivity in the worst-case scenario. However, with
high probability, the selected k-regular graph will exhibit
high algebraic connectivity. We also note that the same
assumption is made in other state-of-the-art algorithms as
that in [26], against which the performance of the proposed
protocol are compared in the section devoted to the numerical
simulations.

A. Empirical validation of the algebraic connectivity

A k-regular graph is known to have the largest eigenvalue
equal to k. All the other eigenvalues, as conjectured by
Alon [16] and proved by Friedman [27], are bounded by
2
√
k − 1 with high probability when the graph is picked at

random among all k-regular graphs, which allows finding a
lower bound on the algebraic connectivity. We summarize
these results in the following proposition.

Proposition 1: Given a random k-regular graph, the eigen-
values µ1 ≤ · · · ≤ µn−1 ≤ µn of its adjacency matrix An

satisfy, with high probability (see [27, Theorem 1.1]),

µn = k, max{|µn−1|, |µ1|} ≤ 2
√
k − 1.

Thus, the second smallest eigenvalue λ2 of the Laplacian
matrix Ln, the algebraic connectivity, is lower-bounded by

λ2 ≥ λ2,lb := k − 2
√
k − 1.

We validate the algebraic connectivity of a graph generated
by Algorithm 1 by comparing it with the lower bound for a
random k-regular graph characterized in Proposition 1. We
run Algorithm 1 on networks with an increasing number
of agents n ∈ {100, 200, . . . , 1000} and select a degree of
regularity k = ⌊√n⌋ proportional to the number of nodes.
Figure 1 shows the relative distance of the algebraic connec-
tivity λ2 from the lower bound λ2,lb, i.e., (λ2−λ2,lb)/λ2,lb,
averaged over 100 different instances of the problem. The
results show that the lower bound for random k-regular
graphs provided by Proposition 1 is always achieved, and
the relative distance to it with the size of the network.

B. Empirical validation of the spectral distribution

The eigenvalues µi of the adjacency matrix An associ-
ated with a random graph G are samples of independent,
identically distributed random variables. In these terms, the

empirical spectral distribution (ESD) PAn
: R → [0, 1] of

the matrix An is an estimate of the cumulative distribution
function P (x) : R → [0, 1] that generated its eigenvalues,

PAn
(x) =

1

n
|{i : µi ≤ x}|,

where |·| denotes the cardinality of a set. In simple terms, the
distribution P (x) is the probability that an eigenvalue takes
a value less than or equal to x, and the ESD PAn

(x) is an
approximation of this probability given the realization An.
Moreover, by the strong law of large numbers, the ESD
PAn(x) almost surely converges to P (x) for n → ∞.
Another important concept is the relative likelihood that an
eigenvalue is equal to a specific value, which is given by the
probability density function ρ : R → R, defined by

lim
n→∞

PAn
(x) = P (x) =

∫ x

−∞
ρ(x)dx.

A first important characterization of the ESD of random
k-regular graph has been provided by McKay in [28],
building upon [29], by considering the case of a fixed degree
of regularity k in the limit of n → ∞.

Proposition 2: Let An be the adjacency matrix of a random
k-regular graph with n nodes. In the limit of n → ∞, the
ESD of the normalized adjacency matrix

An,σ =
1

σ
An, σ =

√
k − 1

approaches the distribution with density

ρk(x) =

{
k2−k

2π(k2−kx2+x2)

√
4− x2 if |x| ≤ 2,

0 otherwise.

It is easy to verify that in the limit of k → ∞ the ESD of Aσ

in Proposition 2 converges to a distribution with semicircle
density. Following this idea, Tran, Vu, and Wang in [30,
Theorem 1.5] proved the following result.

Proposition 3: Let An be the adjacency matrix of a random
k-regular graph with n nodes. In the limit of k, n → ∞, the
ESD of the normalized adjacency matrix

An,σ =
1

σ
An, σ =

√
k − k2/n

approaches the distribution with semicircle density

ρsc(x) =

{
1
2π

√
4− x2, if |x| ≤ 2,

0, otherwise.

We note that the normalization in Proposition 2 is a
special case of that of Proposition 3 for n = k2. The
semicircle density in Proposition 3 is mostly known due
to the Wigner’s semicircle law [31], which describes the
limiting spectral distribution of large random matrices with
independent, identically distributed entries.

To verify the ESD of graphs generated by Algorithm 1,
we compute the eigenvalues of the corresponding normalized
adjacency matrix An,σ = An/σ, compute their ESDs, and
compared them with that characterized in Propositions 2–3
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Fig. 1: Plot of |λ2−λ2,lb| for graphs generated by Algorithm 1 with λ2,lb

as in Proposition 1 with k = ⌊
√
n⌋.

for k-regular graphs. Specifically, we consider two cases:
• First, we fix the degree of regularity k = 12 and let

the number of agents within the network increase as
n ∈ {100, 250, 500, 1000}. The normalization factor is
σ =

√
k − 1 as in Proposition 2.

• Second, we fix the number of agents at n = 1000 and let
the degree of regularity increase as k ∈ {10, 20, 30, 50}.
The normalization factor is σ =

√
k − k2/n as in

Proposition 3.
Figures 2–3 shows the simulation results of the above two
cases, each of which has more than 10 different instances.
The outcomes demonstrate that, for both cases, the ESD
converges towards the distribution expected of a random k-
regular graph, as detailed in Propositions 2–3. Concluding
this section, we detail how the histograms in Figures 2–3 are
obtained: 1) we partitioned the value range [−2, 2] into 16
equal, non-overlapping segments, each with a width of 0.25;
2) we computed the eigenvalues of the normalized adjacency
matrix and identified the count of eigenvalues within each
specified interval; 3) we represented each segment with a
bar in the histogram, where the height of the bar reflects
the ratio of the number of eigenvalues in that interval to the
total count. These demonstrate, from a spectral properties
perspective, that the graphs generated by Algorithm 1 well
approximate random k-regular graphs.

IV. NUMERICAL SIMULATIONS

We compare the performance of the proposed Algorithm 1
with respect to another algorithm proposed by some of us
in [32], which, up to our knowledge, constitutes the state-
of-the-art. One advantage of the proposed Algorithm 1 is
that it does not require an exchange of edges between
neighboring agents, each agent autonomously adds, removes,
or moves edges. This autonomy is granted by the concept of
“edge ownership”, which somehow limits the operativity of
the nodes in a way that any action they make is feasible,
without requiring any coordination with other nodes. On the
other hand, most of the current literature, as well as our
previous algorithm in [32], exploits edge exchange involving
synchronous multi-node coordination.

We consider a network with n = 1000 agents initially
interacting according to a graph with average degree equal
to 10, and we set the desired degree of regularity equal to k =

50. Figure 4 illustrates how the algebraic connectivity λ2 (on
the top), and the maximum/minimum degrees dMIN, dMAX (on
the bottom), change as Algorithm 1 (green) and Algorithm 1
in [32] (blue) are executed. To ensure a fair comparison, the
evolution of the algebraic connectivity is plotted against the
cumulative number of edges that are either added or removed
throughout the algorithms’ operations, i.e., the number of
operations required by the algorithm: the addition or removal
of an edge is considered a single operation, whereas moving
an edge is counted as two operations.

The simulations show that a network implementing Al-
gorithm 1 can self-organize its graph into a 2-approximate
k-regular graph with only about one-fifth the number of
actions required by the algorithm presented in [32] to
construct a k-regular graph. We further note that the self-
organized graph generated by both algorithms increases its
algebraic connectivity λ2, approaching and then exceeding
the lower bound λ2,lb := k − 2

√
k − 1 = 36 for random

k-regular graphs, see Proposition 1.

A. Open networks

We test the proposed Algorithm 1 in the context of open
multi-agent systems, wherein agents are allowed to leave and
join the network during the execution of the algorithm, see
for instance [26], [33]. We consider a network with n =
1000 agents executing Algorithm 1, whose initial interaction
pattern is already described by a random k-regular graph
with k = 50. During the execution of the algorithm, agents
are selected and removed from the network, thus simulating
DoS attacks.

In the field of network security, to disrupt the operation
of a network, attackers attempt to identify and remove key
nodes. The common assumption here is that the attacker
has comprehensive insight into the entire network structure
and the ability to accurately identify the nodes whose re-
moval would severely impact the connectivity and resilience
of the network. To simulate such strategies, we consider
the eigenvectors of the Laplace matrix associated with the
algebraic connectivity, also known as Fiedler eigenvector.
Each entry in the eigenvector corresponds to a node of the
graph, with its sign indicating which part the node belongs
to when the network is segmented into two parts based
on the Fiedler vector. Attackers typically target and remove
the nodes corresponding to the smallest absolute values in
the Fiedler vector, as these nodes often occupy “central”
positions in the graph. The removal of these kind of nodes
can split the network in half, thereby may achieving the
attacker’s goal.

The aim of the simulation is that of showing that the
network is able to self-organize itself when some agents
are disconnected from the network, maintaining a high level
of connectivity and keeping the number of edges limited
to a maximum of (k+2)n

2 . We terminate the simulation
either when the graph becomes disconnected (i.e., the attack
succeeds) or the number of remaining nodes is equal to
n = k + 1 (i.e., the attack fails). To this aim, Figure 5
compares the evolution of λ2 in two scenarios, one accord-
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Fig. 2: Empirical eigenvalue density histogram of the normalized adjacency matrix An/
√
k − 1 of graphs generated by Algorithm 1 in networks with an
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k-regular graphs (see Proposition 2).
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Fig. 3: Empirical eigenvalue density histogram of the normalized adjacency matrix An/
√

k − k2/n of graphs generated by Algorithm 1 in networks with
n = 1000 agents and an increasing degree of regularity k ∈ {10, 20, 30, 50}. The blue curve represents the semicircle density ρsc expected for large
k-regular graphs as k → ∞ (see Proposition 3).

100 101 102 103 104 105 106 107
15

20

25

30

35

40

Number of added and removed edges

A
lg
eb

ra
ic

co
n
n
ec
ti
v
it
y
λ
2

Algorithm 1 Algorithm 1 in [32]

100 101 102 103 104 105 106 107 108
15
20
25
30
35
40
45
50
55

Number of added and removed edgesM
in

an
d
m
ax

d
eg
re
es

d
m
in
,
d
m
a
x Algorithm 1 Algorithm 1 in [32]

Fig. 4: Evolution of λ2 (top) and the maximum/minimum degrees (bottom)
against the number of added and removed edges during the execution of
Algorithm 1 (green curves) and algorithm in [32] (blue curves).

ing to Algorithm 1 (green curve) and the other when no
self-organization of the graph is performed (blue curve).
Moreover, we explore the network’s resilience by varying
the frequency of simulated attacks, namely every 100 steps
(solid curve), every 50 steps (dashed curve), and every 25
steps (dotted curve).
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Fig. 5: Evolution of λ2 in initially 50-regular graphs of n = 1000 nodes
from which one node is disconnected every 100 steps (solid curve), 50 steps
(dashed curve), 25 steps (dotted curve).

Figure 5 clearly shows a significant decrease in algebraic
connectivity when no self-organization of the graph is per-
formed (blue curve), dropping from a value of about 36
to a value of 30 when only 120 nodes have been attacked
and removed from the network, decreasing further until the
network gets eventually disconnected into two components
of approximately 80 nodes each. On the other hand, when
executing Algorithm 1, the algebraic connectivity is kept
high even when the attacks are very frequent. Remarkably,
when the attacker is able to disrupt all nodes but k + 1
the graph is maintained connected with a complete topology
and an algebraic connectivity equal to λ2 = k + 1 = 51.
These results emphasize the effectiveness of Algorithm 1
in robustifying the network’s structure, ensuring it remains
connected even when under DoS attacks.



V. CONCLUSIONS

We present a novel distributed algorithm for self-
organizing any connected graph into a random 2-approximate
k-regular graph, where k is a design parameter known
by each agent. The algorithm is designed to be executed
in open multi-agent networks, where nodes can join and
leave the network at will. Numerical simulations demonstrate
the effectiveness of the protocol by showcasing that the
graphs produced are a close approximation to random k-
regular graphs in terms of algebraic connectivity and spectral
distribution. We also numerically compare our approach to
existing techniques and highlighted the increased resilience
to network disconnections caused by the loss of nodes
or links. Future work will provide a formal proof that
the proposed algorithm can maintain connectivity, and the
spectral distribution of the obtained graphs is close to that
of a random k-regular graph.
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APPENDIX A: PROOF SKETCH OF THEOREM 1

We present here only a proof sketch due to space con-
straints. First, we study the behavior of the minimum and
maximum degrees while the agents execute Algorithm 1. For
the minimum degree dMIN, analyzing rules (A), (R), and (M)
ensures that dMIN does not decrease if dMIN ≤ k. Specifically,
no rule decreases the degree of the agent with the minimum
degree. If dMIN < k, rule (A) will eventually increase dMIN to
at least k. For the maximum degree dMAX, if dMAX ≥ k+2 and
assuming dMIN ≥ k, the rules prevent dMAX from increasing.
If dMAX > k + 2, dMAX eventually decreases to less than
or equal to k + 2 and remains there by executing rules (R)
and (M). Under the assumption that G is initially connected
and remains connected thereafter, Algorithm 1 ensures dMIN

converges to [k,∞) and dMAX converges to [k, k + 2]. This
means the degree di of each agent i ∈ V converges to the
interval di ∈ [k, k+2], resulting in a 2-approximate k-regular
graph.


